Trends in Parallel Computing
Oliver A. McBryan

CU-CS-507-90 December 1990

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Trendsin Parallel Computing 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Trends in Parallel Computing
Oliver A. McBryan

CU-CS-507-90 December 1990

Department of Computer Science
University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309-0430 USA

(303) 492-7514
(303) 492-2844 Fax
mcbryan@boulder.colorado.edu

TRENDS IN PARALLEL COMPUTING

Oliver A. McBryan’

Center for Applied Parallel Processing (CAPP)
Department of Computer Science
University of Colorado
Boulder, CO 80309, USA.

Abstract:

A general consensus is developing that highly parallel computers are the only practical near
term route to the teraflops of computing power required by many scientific and engineering
problems. While current conventional supercomputers already utilize low parallelism, highly
parallel computers are still in the experimental stage, although they are increasingly visible at
the front line of grand challenge computations. While it has been clearly demonstrated that such
systems can be built, and are reliable, there has been only limited success with developing
appropriate user-level software.

We survey recent and upcoming developments in the area of parallel supercomputing,
focusing on the the underlying trends that have proved successful. We illustrate the general
remarks with more detailed discussion of a few representative systems. Finally we discuss the
likely next-generation computing environment: a heterogeneous ensemble of scalar, vector,
parallel and graphics computers along with disk farms and network interfaces to users.

f Supported in part by Air Force Office of Scientific Research, under grant AFOSR-89-0422.

-2

1. OVERVIEW OF PARALLEL SYSTEMS

1.1. Classification of Parallel Computers

Parallel computers may be broadly categorized in two types - SIMD or MIMD!, SIMD and
MIMD are acronyms for Single Instruction stream - Multiple Data stream, and Multiple Instruc-
tion stream - Multiple Data stream respectively. In SIMD computers, every processor executes
the same instruction at every cycle, whereas in a MIMD machine, each processor executes
instructions independently of the others. The vector unit of a CRAY computer is an example of
SIMD parallelism - the same operation must be performed on all components of a vector. Most
of the interesting new parallel computers are of MIMD type which greatly increases the range of
computations in which parallelism may be effectively exploited using these machines. How-
ever, this occurs at the expense of programming ease - MIMD computers are much more
difficult to program than SIMD machines. Many current designs incorporate both MIMD and
SIMD aspects - typically each node of an MIMD system is itself a vector processor.

Another easy categorization is between machines with global or local memories. In local
memory machines, communication between processors is entirely handled by a communication
network, whereas in global memory machines a single high-speed memory is accessible to all
processors. Beyond this, it becomes difficult to categorize parallel machines. There is an enor-
mous variety in the current designs, particularly in the inter-connection networks. For a taxon-
omy of designs, see the paper of Schwartz2.

While many interesting parallel machines involve only a few processors, we will concen-
trate in this survey on those machines which have moderate to large numbers of processors.
Important classes of machines such as the CRAY Y-MP, CRAY-2 and the Japanese supercom-
puters are therefore omitted from the subsequent discussions.

1.2. A Partial List of Multi-processors

There are at least 100 recent or current parallel computer projects worldwide. Table 1 lists
a selection of such projects, a mix of university and industrial enterprises. This is just a sample
of the diverse projects but covers a wide range of different architectures chosen more or less at
random. While some of these projects are unlikely to lead to practical machines, a substantial
number will probably lead to useful prototypes. Several commercial parallel computers have
been or are already in production (e.g., Connection Machine CM-2, Denelcor HEP-1, Evans and
Sutherland ES-1, FPS T-Series, ICL. DAP, Intel iPSC2, Meiko, Myrias SPS-2, NCUBE-2, Par-
sytec, SUPRENUM-1, Symult 2010) and more are under development. Some of these products
have been commercial failures (e.g. Denelcor HEP, ETA-10, ES-1, FPS T-Series, Symult 2010),
yet they have provided important insights into parallelism. One should also remember that the
latest CRAY computers, (e.g. CRAY Y-MP and CRAY-2) involve multiple processors, and
other vector computer manufacturers such as NEC, Fujitsu and Hitachi have similar strategies.

Beyond the simple classification into SIMD or MIMD computers we recognize a vast array
of different approaches to the task of building a parallel architecture. We will now look at the

Table 1: Some Parallel Computer Projects

ICL DAP

Intel iPSC hypercube
Denelcor HEP-1
Connection Machine CM-2
CRAY Y-MP and CRAY-2
IBM 3096

Goodyear MPP

BBN Butterfly
SUPRENUM-1

Paralex Pegasus

Myrias SPS-2

Meiko

Evans & Sutherland ES-1
Flex

Sequent Balance

CCI Navier-Stokes Machine

CalTech Hyper-Cube
NCUBE hypercube
NYU/IBM Ultra-computer/RP3
FPS T-Series

ETA-10

Multiflow

MIT Data-flow Machines
Wisconsin Database Machine
IBM GF-11 and TF1

Symult 2010

Cedar Project

Parsytec

CMU iWarp

Alliant FX-8

Encore Multimax

TERA

MasPar MP-1 Kendall Square

reasons for this broad range by discussing some of the possibilities encountered for both node
and communication facilities.

1.3. Node Design

By node we mean the individual computational processor, along with its associated com-
munications hardware, and local memory if available. Node design tends to be far less variable
than other aspects of parallel computers. The main reason for this is that most architects have
relied on off-the-shelf products for the node - standard microprocessors, floating point accelera-
tors and memory chips. The advantage is that startup time for a project may be substantially
reduced. Additionally there is a usually a substantial body of low-level software available for
such processors - software such as compilers, assemblers and debuggers. Thus we find that an
enormous number of the current parallel computer products are based on one or more of the Intel
80386, Motorola 68020, INMOS T800 transputer, the Weitek floating point accelerators, and
(recently) the Intel i860. Typically one of these microprocessors will be combined on a board
with a floating point coprocessor (e.g. 80387 or 68881), possibly a Weitek processor and several
megabytes of memory. Memory consumes substantial space, and current systems have in the
range of 1 to 32 Mbytes per node. Despite these general comments, it should be mentioned that
some manufacturers have developed custom processors specifically for parallel computers. In
the list above we would point to the DAP, NCUBE, HEP-1, CM-2, ES-1, iWarp and Navier-

Stokes machines as examples.

1.4. Communication Features

The range of inter-processor communication facilities is what really characterizes the
differences in architecture among the various parallel machines. While we have previously dis-
tinguished the shared memory and distributed memory classes, one should observe that this dis-
tinction should not be taken too seriously. A distributed memory computer can certainly simu-
late a global shared memory and vice versa.

Communication pathways are typically built either from direct point-to-point connections,
or from busses. Busses have the advantage that many processors may be serviced by one com-
munication path, but have the disadvantage of slower bandwidth performance as the number of
processors increases. With point-to-point connections, processors that are directly connected
will have very efficient communication, but indirectly connected processors will likely incur
substantial extra overheads including increased latency as well as lower bandwidth.

The most popular interconnection strategies involve simple symmetric arrangements
including rings, meshes, hypercubes, trees and complete connections or crossbars. The pre-
valence of hypercube designs is explained by the fact that the architecture supplies substantial
parallel bandwidth for many standard algorithms, for example the Fast Fourier Transform, while
at the same time incurring only relatively modest fan-in and fan-out of connections which grow
in number only logarithmically with the processors. On the other hand, hypercube wiring com-
plexity grows with the number of processors and the likelihood increases that most wires are
unused most of the time. Table 2 compares several simple topologies as a function of processor
number P from the point of view of amount of wiring (difficulty of building), connectivity (ease
of programming) and maximal path (efficiency of long-range communication).

Table 2: Properties of Interconnection Networks
Network Wires Connectivity Max Path
Cross Bar P? P 1
1D Grid P 2 P
2D Grid 2P 4 2P
Binary Tree P 1-3 2logP
Hypercube SPlogP logP logP

While cross bar switches are extremely difficult to build for large numbers of processors,
they have tremendous flexibility in terms of efficiency and ease of use. It is conceivable that a
technological breakthrough such as optical switching might allow cross bars to be built that

-5-

would connect thousands of processors. For the time being, crossbars are restricted to small sys-
tems of at most 64 processors, or to providing interconnects among the processors of sub-
clusters within larger machines (e.g. the ES-1).

Bus based connection networks are attractive for moderate numbers of processors, for
example 16 to 32. Beyond this point bandwidth begins to suffer intolerably. Architectures
based on busses therefore tend to be hierarchical beyond that number of processors. As an
example, the SUPRENUM-1 computer uses a fast local bus to connect within a cluster of 16 pro-
cessors. Clusters are arranged in a rectangular grid and connected by row and column busses,
which has the added attraction of providing redundancy and double bandwidth. The Myrias
SPS-2 is similar, utilizing three levels of bus: 4 processors connected on a single board by a bus,
cages of 16 boards connected by a pair of backplane busses, and finally cages connected by
third-level busses.

New configurations of processors continue to be proposed. Of particular interest are Giloi
and Montenegro’s TICNET architecture3, and Faber’s vertex-symmetric minimal path net-
works?.

One recent trend is the move towards "worm-hole" routing in distributed systems. The
basic idea here is to allow virtual circuits to be established between remote processors, and
without the necessity of interrupting any intermediate nodes. While there may be a small over-
head for circuit creation, subsequently all data traverses the circuit without overheads such as
multiple startup costs at intermediate nodes. Once a circuit is established, communication
proceeds essentially in bit-serial fashion. Frequently it suffices to create logical rather than phy-
sical connections. These allow messages to proceed on virtual worm-hole channels, but with the
possibility that physically the channels are multiplexed. This is particularly convenient as a
means for preventing dead-locks and blocking of small messages by large ones. The resulting
communication performance tends to be essentially independent of distance. Worm-hole routing
is utilized in the CM-2, the iPSC2, the iWarp and the Symult among others. In the case of
Symult, the designers were so confident of the advantages of worm-hole routing that they aban-
doned a hypercube architecture from their first generation in favor of a simple two-dimensional
rectangular grid. The Intel iPSC2 hypercube will give way in the near future to a rectangular-
grid based iPSC3, similar in spirit to the Symult.

1.5. Software

Software for currently available parallel computers is extremely limited. In all cases
manufacturers provide Fortran and C compilers, which are frequently just a single-node proces-
sor compiler. These compilers usually have no concept of parallelism or of communication
capability. Typical examples are the systems supplied by Intel, Symult and NCUBE. In these
systems, all communication and process control is initiated explicitly by the user, resulting in
substantial code modification as well as a loss of portability of software. Typically libraries of
low-level communication primitives are supplied with these systems to allow the user to initiate
communications operations. The resulting software is best described as "programming in

communication assembly language".

A few manufacturers have gone beyond this step by providing language extensions that
capture aspects of the parallel hardware. Thinking Machines provides a parallel Fortran for their
Connection Machine CM-2 computer. The compiler supports the Fortran 90 array extensions to
Fortran 77, and the convention is that objects declared as arrays are understood to be distributed
across the parallel processors. Communication among processors is supported by the FOO shift
operations, as well as the various reduction operators such as vector sum. While the Connection
Machine programming environment is remarkably elegant and user-friendly, one should point
out that the task is much simplified by the SIMD nature of the hardware onto which array opera-
tions map extremely well.

Myrias Corporation (SPS-2) and Evans and Sutherland (ES-1, no longer in production) both
support a virtual address space across processors. If a processor attempts to access a memory
location not in its physical memory, then a page fault occurs and the appropriate memory page is
fetched from the processor which has it. Myrias in particular have implemented a sophisticated
mechanism for load balancing and rapid access to memory. The system attempts to localize
page table information and to provide access to it in a distributed fashion. The Myrias system is
the first to provide virtual shared memory on a distributed memory architecture. The ES-1 is
actually a cross-bar based shared memory computer, and here again virtual memory was pro-
vided to make the memory system more transparent.

SUPRENUM supports extensions to Fortran for task control, and to assist in communica-
tion operations. In addition SUPRENUM is unique in providing a sophisticated high-level inter-
face to the communication system. The library supports a range of grid-oriented operations that
largely shield a numerical user from dealing with the communication system directly. In addi-
tion to providing powerful programming tools, such systems deliver the possibility of substantial
program portability across architectures that support the common set of primitives.

One should also note the tendency to support virtual processes. This is an important aid to
software development as it allows an application to simulate a larger number of processors than
are physically present. Virtual processing actually can increase system throughput by allowing
nodes to remain computationally active while a process is suspended waiting for memory or
messages. Virtual processing is supported by the majority of systems in one form or another.
Examples include iPSC, SUPRENUM, Symult, Myrias and CM-2.

2. SOME REPRESENTATIVE PARALLEL SYSTEMS

In this section we will look in more depth at the characteristics of a number of these
machines. The machines currently under development have processor numbers ranging between
2 and 65,536. The machines discussed vary greatly in local processing power, ranging from a
few megaflops up to 28 Gflops.

Intel iPSC

In fall 1989 Intel announced an i860-based version of the older iPSC/2 hypercube system.
Two 128 processor prototypes have been shipped to Oak Ridge National Laboratory and to
NASA-Ames. These iPSC/860 systems are basically standard iPSC/2 hypercubes with the node
processors replaced by Intel 1860 processors. In terms of raw floating point performance the
peak rate is thereby increased to 60 Mflops. In practice it is unlikely that more than 40 Mflops
can be realized due to the memory model used by the i860. Some simple vector type kernels,
hand-coded in assembler, are currently running at from 28 to 38 Mflops/node. Well-designed
Fortran programs are currently yielding about 3-4 Mflops/node due to the poor state of the 1860
Fortran compilers. Several major i860 compiler efforts are underway and will undoubtedly
improve substantially on the early results. Because the communication facilities of the iPSC/860
are those of the iPSC/2, the system is constrained to a maximum of 128 nodes.

While the iPSC/860 utilizes the slow iPSC/2 communication hardware and software, com-
munication proves to be much faster on the i860 system than on the iPSC/2. This is because
most of the message startup communication overhead is software overhead involved in negotiat-
ing the communication protocol. Because the i860 is so much faster than the 80386, the
software overhead is correspondingly decreased. The effect is to reduce messaging time by
about a factor of three.

The iPSC/860 actually supports heterogeneous boards - a mixture of 1860 and 80386 boards
is allowed. This permits special 80386 nodes to take advantage of the flexible interfaces to
graphics, disk and other peripherals available to that processor. For example 780 Mbyte disks
may be attached to such nodes via 4Mbyte/sec SCSI interface. Frame buffers, VMEbus devices
and Ethernet also plug into these boards.

Intel has also announced plans to develop a rectangular grid version of the iPSC/860 - the
iPSC3. This system is very similar in architecture to the Symult 2010 system. There are 8 com-
munication paths per node, allowing 4 bidirectional channels as required for a two-dimensional
grid. With the new communication structure, the iPSC will be freed from the constraint of a
maximum of 128 nodes. Indeed Intel has announced a 2048 processor version of the iPSC3,
called Touchstone. With a peak processing rate of 80 Gflops this will be a formidable system in
the 1991 timeframe.

CMU iWarp

The iWarp computer® is a follow-on to the 100 Mflop Warp system developed at
Carnegie-Mellon University. The key advance in the iWarp is the development of a single chip
processor combining the following functions: 20 Mflops computational power, 320 Mbyte/sec
memory throughput and a communication engine with a latency of only 150 nanoseconds. The
processor has been implemented as a 600,000 transistor custom VLSI chip fabricated by Intel
Corporation, hence the i in the name iWarp. Up to 64 Mbytes of memory is accessible per pro-
CessOr.

One important point is that the processor accomplishes 20 Mflops without pipelining. The
adder unit delivers 5 Mflops (64-bit) or 10 Mflops (32-bit), non-pipelined, as does the multiplier

-8-

unit. In addition the integer/logical unit delivers 20 Mips. All three units may perform simul-
taneously.

The system has been designed for flexibility from the start, and can be used efficiently to
represent either a general purpose distributed memory computer, or special purpose systolic
arrays. The initial iWarp is an 8x8 array of processors delivering 1.2 Gflops, and expected to be
available in 1990, but there are plans to extend this up to 1,024 processors.

The communication facilities of iWarp are based on four input and output ports, each run-
ning at 40 Mbytes/sec. An input port of one iWarp processor may be connected directly to the
output port of another processor to form a point-to-point communication network. A natural
arrangement is thus to create one and two dimensional grids of processors. Because the com-
munication processor performs independently of the numeric processor, worm-hole routing can
be supported. Logical channels are supported by multiplexing of the physical communication
lines, allowing for deadlock to be broken, and for long messages to be interrupted in worm-hole
routing.

NCUBE2

NCUBE introduced the NCUBE hypercube at around the same time that Intel developed
the iPSC1. The NCUBE is characterized by having a custom designed scalar processor, and
allowing up to 1024 processors as compared to 128 for the iPSC1. Recently NCUBE has intro-
duced the second generation NCUBE2. This system is extensible up to a 8192 node hypercube
with a peak rating of 60 Gips, 27 Gflops (32-bit) and 19 Gflops (64-bit). The full size system
costs over $20M, and supports 512 Gbytes of memory and 16 Tbytes of disk. 1024 processor
systems have been shipped (Jan 1990) to Shell Oil and to Sandia National Laboratory. The high
cost per Mflops of the NCUBE2 compared to the Intel iPSC/860 may prove to be an obstacle to
marketing success.

The key advance in the NCUBE2 is the development of a 64-bit 20MHz custom processor
providing high scalar performance. The communication processor supports 28 DMA channels
for communication to neighboring processors, allowing 14 bidirectional connections to nearest
neighbors in a hypercube.

GF-11

The GF-11 is an IBM parallel computer, designed to perform very specific scientific com-
putations at Gflop rates. The GF-11 has 576 processors (including 64 backup processors), cou-
pled through a three stage Benes network which can be reconfigured at every cycle in 1024 dif-
ferent ways by an IBM 3084 control processor. Peak processing power of 11 Gflops will allow
previously uncharted computational regimes to be explored. The machine has been designed
primarily for solving quantum field theory problems and is not a general purpose computer; in
particular, very little system software is available. It is an SIMD architecture but with some
flexibility in that the settings of local registers may be used to control the behavior of individual
Processors.

-9.-

While difficult to program, the GF-11 has been adapted to a number of problems. As an
example, a 2D fluid mechanics code is running on the system in February 1990 at 3.7 Gflops,
indicating very high computational efficiency.

Connection Machine

The Connection Machine CM-1 designed by Thinking Machines, Inc., has 65,536 1-bit pro-
cessors. Processors are arranged with 16 on a chip along with a communications router and
associated local memory. While designed primarily for artificial intelligence work, this machine
has proved to have even greater potential applications to scientific computing applications7’8.
The more recent CM-2 computer adds 2,048 Weitek floating point processors and 2 Gbytes of
memory, to provide a powerful computer for numerical as well as symbolic computing. Peak
computational rate at 7MHz (the current clock rate) is theoretically about 24 Gflops (32-bit).

The CM computers are SIMD machines. Logic is supported by allowing individual proces-
sors to skip the execution of any instruction, based on the setting of a flag in their local memory.
The CM communications facilities are based on a hypercube network, with a total communica-
tion bandwidth of order 3 Gbytes/sec. Communication is by worm-hole type routing. The sys-
tem supports I/O to disks at up to 320 Mbyte/sec, and to graphics frame buffers at 40 Mbyte/sec.

Recently (December 1989) Thinking Machines has announced that it is developing a one
million processor system with a goal of producing a TerraOps (trillion operations per second)
machine by 1995.

Connection Machine software consists of parallel versions of Fortran, C and Lisp. In each
case it is possible to declare parallel variables, which are automatically allocated on the hyper-
cube. Programs execute on a front end machine, but when instructions are encountered involv-
ing parallel variables, they are executed as parallel instructions on the hypercube. The system
supports the concept of virtual processors. A user can specify that he would like to compute
with a million (or more) virtual processors, and such processors are then similar to physical pro-
cessors in all respects except speed and memory size. A typical use is to assign one virtual pro-
cessor per grid point in a discretization application. This provides a very convenient program-
ming model. Parallel global memory reference is supported using both regular multi-
dimensional grid notations (NEWS communication) and random access (hypercube) modes.

The Connection Machine is one of the few examples where a program from a serial
machine (e.g. work-station) or from a CRAY may be moved to a parallel machine and run essen-
tially without change. The CM-2 Fortran is Fortran-77 with the addition of the array extensions
of Fortran 90. All array data types and operators are implemented as parallel objects or opera-
tors on the CM-2. In the case of Fortran-77 programs, a preliminary vectorizer is available that
produces Fortran 90 as output. Because of the SIMD architecture no synchronization instruc-
tions are required.

It is extremely rare to approach the 24 Gflops peak rate of the CM-2. In practice one attains
about 10% to 20% of that rate. In part this is because in addition to normal hypercube communi-
cation (e.g. to nearest neighbors in a grid) there is also extra communication required for every
floating point operation. Since the floating point processors are off-chip, each of the 32 bit-serial

-10 -

processors that share a Weitek, must send its data to the Weitek for processing. Furthermore
since the data arrives bit-serially, it needs to be "transposed” so as to be presented as floating
point data to the Weitek. These two steps between the processors and the Weitek units account
for much of the performance loss. Only in situations where numbers can be deposited in the 64
Weitek registers (shared by 32 processors), and then computed on for a substantial time without
leaving the Weitek, can the theoretical speed be approached. For example, parallel polynomial
evaluation proceeds at up to 20 Gflops - which ensures that transcendental functions are
extremely fast on the system. Standard numerical algorithms such as relaxations or conjugate
gradient iterations perform at from 2 to 4 Gflops, which is also typical of performance on
regular-grid evolution problems. Despite the low efficiency, these performance numbers exceed
those of a CRAY Y-MP/8, and with a price tag around $6M, the 65,536 processor system is
cost-effective for classes of problems that exhibit massive SIMD data parallelism.

The CM-2 computer has established a real commercial success in the following sense.
Most highly parallel machines sold to date have been purchased for experimental research at
universities or major research laboratories, not for production supercomputing use. A substantial
number of CM-2 machines have however been sold for production uses, including database
management (Dow Jones), seismic processing (Mobil), and aircraft design (United Technologies
and Lockheed) to mention a few examples. In comparing the CM-2 computer to other systems
one should keep in mind that the CM-2 is (in 1990) a three to four year old system, and one
should expect very sizable performance improvements in the near future.

AMT DAP

The DAP was the first massively parallel single-bit computer, and has been widely used for
a range of scientific applications. Its current incarnation as the AMT 510 attached processor,
provides the capability to attach a 1024 processor DAP array to any VAX or SUN computer.
The 510 is a 32x32 array of processors, arranged as a two-dimensional grid and is implemented
in VLSI on 16 chips. Additional busses connect all processors on each row and column and are
used for broadcasts and other non-local operations. Up to 1 Mbit of memory may be installed
per processor, for a combined total of 128 Mbytes. The computer is SIMD, and can execute at
up to 60 Mflops, although boolean operations perform at up to 10 Gips.

MasPar MP-1

The MasPar MP-1 series (1101, 1104, .., 1116) are SIMD array machines featuring both a
grid connectivity and a routing system for messages. The individual processors are 4-bit, with
floating point performed in emulation mode. The systems range in size from 1K to 16K proces-
sors. The MP-1 is intermediate in design between the DAP and the CM-2. The system is priced
substantially lower than a CM-2, but this is likely an advantage only for those applications not
requiring floating point. Because of its intermediate position between the DAP and the CM-2, it
is not clear how effective MasPar can be in capturing market share.

-11 -

Myrias

The Myrias SPS-2 computer, built by Myrias Research Corp. of Edmonton, Alberta, has up
to 1024 processing elements. The architecture is a hierarchical bus design, utilizing 33
Mbytes/sec busses to interconnect processors within clusters and clusters to each other. Each
processor is a 32-bit Motorola 68020 microprocessor with 4 Mbytes of local memory. The
architecture is a three-level hierarchical system. Processors are assembled in groups of four on a
board connected among each other by a bus, along with an I/O port controller. At the second
level in the hierarchy is the card cage, containing 16 processor boards and thus 64 processors, as
well as one or two off-cage communication boards. Each communication board supports four
off-cage links which can be connected to other cages or to the front end computer.

The SPS-2 supports a global 32-bit virtual address space. There is no concept of shared
access to memory locations. Simple extensions of Fortran support parallel do and join opera-
tions. The PARDO model used by Myrias is somewhat unusual in that there are no possibilities
for explicit sharing of data. A PARDO is executed by specifying a code segment to be executed
and the number of child tasks to be run. Each thread of execution performs completely indepen-
dently in its own address space, starting with a copy of the parents memory. Execution of a
child proceeds in normal sequential mode, except that PARDO’s may be nested recursively. On
completion of all children, the memory states of the children are merged to form the new
memory state of the parent. Thus a child can never affect the memory of another child, but can
affect the memory state of its parent, but only after all children merge.

The rules for merging of child memories at an address on task completion are:

e If no child stored a value at the address, the location in the parent memory retains its origi-
nal value.

e If exactly one child changed a value at the address, the location in the parent receives the
last value from the child.

e If more than one child stores a value at the address the result is unpredicatable unless all
values stored are the same.

Efficiency is maintained throughout the process by using a copy-on-write approach which
ensures that most of the global address space is never really replicated.

SUPRENUM

The German SUPRENUM-1 project involves coupling up to 16 processor clusters with a
network of 200 Mbit/sec. busses. The busses are arranged as a rectangular grid with 4 horizontal
and 4 vertical busses. Each cluster consists of 16 processors connected by a fast bus, along with
1/O devices for communication to the global bus grid and to disk and host computers. There is a
dedicated disk for each cluster. Individual processors can deliver up to 20 Mflops (64-bit) of
computing power (in chained operations, or 10 Mflops unchained) and support § Mbytes of
memory. The high speed of the bus network makes this an interesting machine for a wide range
of applications, including those requiring long-range communication. No more than three com-
munication steps are ever required between remote nodes.

-12 -

SUPRENUM is characterized by the best support for scientific applications to be found
among the various distributed memory MIMD vendors. The effort invested in development of
libraries of high-level grid and communication primitives will greatly ease the effort of moving
applications to the computer, and also provides substantial high-level portability to other sys-
tems, since the communication library can be implemented in terms of low level primitives on
any distributed system.

The first 64-processor system was delivered in December 1989 and will be upgraded to 256
processors during 1990. With a 5 Gflops peak rating and high realizable efficiency in some
applications, it is a serious contender in the race for worlds fastest supercomputer at the current
time. We have recently benchmarked the Shallow Water Equations atmospheric benchmark on
the SUPRENUM-1, obtaining 4 Mflops per node®, which equals or slightly exceeds typical
iPSC2/860 performance.

3. FUTURE SUPERCOMPUTING ENVIRONMENTS: HETEROGENEOUS SYSTEMS

Over the last 20 years we have seen a gradual evolution from scalar sequential hardware to
vector processing and more recently to parallel processing. No clear consensus has emerged on
an ideal architecture. The trend to vector and parallel processing has been driven by the compu-
tational needs of certain problems, but the resulting systems are then inappropriate for other
classes of problems. It is unlikely that in the near term this situation will be resolved, and indeed
one can anticipate further generations of even more specialized processor systems appearing.

There is a simple way of avoiding the problem described above. The key is to develop
seamless integrated heterogeneous computing environments. Such an environment will present
to the user all of the resources he might need to avail of for any application: fast scalar, vector
and parallel processors, graphics supercomputers, disk farms and interfaces to networks. All of
these units would be interconnected by a high bandwidth low latency switch, which would pro-
vide transparent access between the systems. System software would present a uniform global
view of the integrated resource, provide a global name space or a shared memory, and control
load balancing and resource allocation.

The hardware technology is now at hand to allow such systems to be built. Two key
ingredients are the recent development of fast switching systems and the development of high-
speed connection protocols and hardware implementing these protocols, standardized across a
wide range of vendors. We illustrate with two examples.

Recently CMU researchers have designed and built a 100 Mbit/sec switch called NECTAR
which supports point to point connections between 32 processors. A Gbit/sec version of NEC-
TAR is in the design stage. Simultaneously, various supercomputer and graphics workstation
vendors have begun to develop high speed (800 Mbit/sec) interfaces for their systems. Combin-
ing these approaches we see that at the hardware level it is already possible to begin assembling
powerful heterogeneous systems. As usual the really tough problems will be at the software

-13 -

level.

Several groups are working on aspects of the software problem. In our own group at the
Center for Parallel Processing in Boulder, Colorado, we have recently developed a simple
heterogeneous environment consisting of a Connection Machine CM-2 and a Stardent Titan
graphics super work-station19. The Titan is connected with the CM-2 through the CM-2 back-
end, rather than through the much slower front-end interface which is usually used for such con-
nectivity. The object-oriented high-level Stardent AVS visualization system is then made
directly available to the CM-2 user, allowing him to access and manipulate graphical objects
computed on the CM-2 in real time, while the CM-2 is freed to pursue the next phase of its com-
putation. Essentially this means that to the user, AVS is available on the CM-2. Porting AVS
directly to the CM-2 would have been a formidable and pointless task. Furthermore the CM-2 is
freed to perform the computations that it is best suited for, rather than wasting time performing
hidden surface algorithms or polygon rendering.

Looking to the future, we believe that most of the research issues of heterogeneous comput-
ing will have been solved by the late 1990’s, and in that time frame we would expect to see
evolving heterogeneous systems coming into widespread use wherever a variety of distinct com-
putational resources are present. In the meantime one can expect to see more limited experi-
ments in heterogeneous environments at major research computation laboratories, such as Los
Alamos National Laboratory and the NSF Supercomputer Centers in the USA. and Julich or the
GMD in Germany.

References

1. M.J. Flynn, ‘““Very high-speed computing,’’ Proc. IEEE, vol. 54, pp. 1901-1909, 1966.

2. J. Schwartz, ‘A Taxonomic Table of Parallel Computers, Based on 55 Designs,”” Ultra-
computer Note #69, Courant Institute, New York, 1983.

3. W.K. Giloi and S. Montenegro, ‘‘Super Interconnection Networks for Super Computers,’’
GMD Technical Report, Berlin, 1988.

4. V. Faber and J. Moore, ‘‘High-degree Low-diameter Interconnection Networks with Vertex
Symmetry: The Directed Case,”” Los Alamos Technical Report LA-UR-88-1051, March
1988.

5. O. McBryan and E. Van de Velde, Hypercube Algorithms and Implementations, SIAM J.
Sci. Stat. Comput., 8, pp. 227-287, 1987.

6. Borkar, S., Cohn, R., Cox, G., Gleason, S., Gross, T., Kung, H. T., Lam, M., Moore, B.,
Peterson, C., Pieper, J., Rankin, L., Tseng, P. S., Sutton, J., Urbanski, J., and Webb, J.,
“‘iWarp: An Integrated Solution to High-Speed Parallel Computing,”’ in Proceedings of
Supercomputing ' 88, pp. 330-339, IEEE Computer Society and ACM SIGARCH, Orlando,
Florida, Nov 1988.

-14 -

7. O. McBryan, ‘“The Connection Machine: PDE Solution on 65536 Processors,”” Parallel
Computing, vol. 9, pp. 1-24, North-Holland, 1988.

8. O. McBryan, ‘‘Solving PDE at 3.8 Gigaflops,”” University of Colorado CS Dept Preprint,
Sept 1987.

9. O. McBryan, Implementation of the Shallow Water Benchmark on the SUPRENUM-I
Parallel Supercomputer, CS Dept Technical Report, University of Colorado, Boulder,
1990.

10. L. Compagnoni, S. Crivelli, S. Goldhaber, R. Loft, O. McBryan, A. Repenning, and R.

Speer, A Simple Heterogeneous Computing Environment: Interfacing Graphics Work-
stations to a Connection Machine., CS Dept Technical Report, University of Colorado,

Boulder, 1990.

